Novel Role of the Nociceptin System as a Regulator of Glutamate Transporter Expression in Developing Astrocytes

Abstract

Our previous results showed that oligodendrocyte development is regulated by both nociceptin and its G-protein coupled receptor, the nociceptin/orphanin FQ receptor (NOPR). The present in vitro and in vivo findings show that nociceptin plays a crucial conserved role in both human and rodent brain astrocytes, regulating the levels of the glutamate/aspartate transporter GLAST/EAAT1. This nociceptin-mediated response takes place during a critical developmental window that coincides with astrocyte maturation and synapse formation. GLAST/EAAT1 upregulation by nociceptin is mediated by NOPR and the downstream participation of a complex signaling cascade that involves the interaction of several kinase systems, including PI-3K/AKT, mTOR and JAK. Because GLAST is the main glutamate transporter during brain maturation, these novel findings suggest that nociceptin plays a crucial role in regulating the function of early astrocytes and their capacity to support glutamate homeostasis in the developing brain

Similar works

This paper was published in VCU Scholars Compass.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.