Article thumbnail

Increase in Acid Tolerance of Campylobacter jejuni through Coincubation with Amoebae ▿

By Diana Axelsson-Olsson, Lovisa Svensson, Jenny Olofsson, Paulo Salomon, Jonas Waldenström, Patrik Ellström and Björn Olsen

Abstract

Campylobacter jejuni is a recognized and common gastrointestinal pathogen in most parts of the world. Human infections are often food borne, and the bacterium is frequent among poultry and other food animals. However, much less is known about the epidemiology of C. jejuni in the environment and what mechanisms the bacterium depends on to tolerate low pH. The sensitive nature of C. jejuni stands in contrast to the fact that it is difficult to eradicate from poultry production, and even more contradictory is the fact that the bacterium is able to survive the acidic passage through the human stomach. Here we expand the knowledge on C. jejuni acid tolerance by looking at protozoa as a potential epidemiological pathway of infection. Our results showed that when C. jejuni cells were coincubated with Acanthamoeba polyphaga in acidified phosphate-buffered saline (PBS) or tap water, the bacteria could tolerate pHs far below those in their normal range, even surviving at pH 4 for 20 h and at pH 2 for 5 h. Interestingly, moderately acidic conditions (pH 4 and 5) were shown to trigger C. jejuni motility as well as to increase adhesion/internalization of bacteria into A. polyphaga. Taken together, the results suggest that protozoa may act as protective hosts against harsh conditions and might be a potential risk factor for C. jejuni infections. These findings may be important for our understanding of C. jejuni passage through the gastrointestinal tract and for hygiene practices used in poultry settings

Topics: Microbial Ecology
Publisher: American Society for Microbiology (ASM)
OAI identifier: oai:pubmedcentral.nih.gov:2897417
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)

  • To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.

    Suggested articles