Article thumbnail

Use of Tissue Culture Cell Lines to Evaluate HIV Antiviral Resistance

By Halina Krowicka, James E. Robinson, Rebecca Clark, Shannon Hager, Stephanie Broyles and Seth H. Pincus


Most current assays of HIV antiviral resistance are based on either sequencing of viral genes (genotypic assays) or amplification and insertion of these genes into standardized virus backbones and culture. These latter are called phenotypic assays. But the only generally accepted phenotypic assay is based upon culture of intact patient virus, performed in phytohemagglutinin-activated peripheral blood mononuclear cells (PHA blasts) in the presence of differing drug concentrations. However, PHA blast culture is difficult and not always reproducible. Therefore we have sought cell lines that may produce more predictable results, yet faithfully mirror results in PHA blasts. We have compared 10 different cell lines for receptor and coreceptor expression, growth of laboratory-adapted strains of HIV, growth by direct inoculation of PBMC from infected patients, and in assays of antiviral drug effects. One of these cell lines, C8166-R5, is statistically not inferior to CD8-depleted PHA blasts for culturing HIV from the peripheral blood cells of patients. The effective concentrations of antiviral drugs of all classes were similar when assayed in C8166-R5 or PHA blasts. Known drug-resistant isolates grown in C8166-R5 demonstrated the predicted effects. We followed a patient longitudinally and demonstrated that resistance testing in C8166-R5 was predictive of clinical outcome. These experiments represent the first steps in developing a clinically useful phenotypic drug resistance assay based upon culturing the patient's own virus

Topics: Virology
Publisher: Mary Ann Liebert, Inc.
OAI identifier:
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)

  • To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.

    Suggested articles