On nonconservativeness of Eringen’s nonlocal elasticity in beam mechanics: correction from a discrete-based approach

Abstract

In this paper, the self-adjointness of Eringen’s nonlocal elasticity is investigated based on simple one-dimensional beam models. It is shown that Eringen’s model may be nonself-adjoint and that it can result in an unexpected stiffening effect for a cantilever’s fundamental vibration frequency with respect to increasing Eringen’s small length scale coefficient. This is clearly inconsistent with the softening results of all other boundary conditions as well as the higher vibration modes of a cantilever beam. By using a (discrete) microstructured beam model, we demonstrate that the vibration frequencies obtained decrease with respect to an increase in the small length scale parameter. Furthermore, the microstructured beam model is consistently approximated by Eringen’s nonlocal model for an equivalent set of beam equations in conjunction with variationally based boundary conditions (conservative elastic model). An equivalence principle is shown between the Hamiltonian of the microstructured system and the one of the nonlocal continuous beam system. We then offer a remedy for the special case of the cantilever beam by tweaking the boundary condition for the bending moment of a free end based on the microstructured model

Similar works

Full text

thumbnail-image

University of Queensland eSpace

redirect
Last time updated on 02/07/2017

This paper was published in University of Queensland eSpace.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.