Study of physical simulation of electrochemical modification of clayey rock

Abstract

Clayey rock has large clay mineral content. When in contact with water, this expands considerably and may present a significant hazard to the stability of the rock in geotechnical engineering applications. This is particularly important in the present work, which focused on mitigating some unwelcomed properties of clayey rock. Changes in its physical properties were simulated by subjecting the rock to a low voltage direct current (DC) using copper, steel and aluminum electrodes. The modified mechanism of the coupled electrical and chemical fields acting on the clayey rock was analyzed. It was concluded that the essence of clayey rock electrochemical modification is the electrokinetic effect of the DC field, together with the coupled hydraulic and electrical potential gradients in fine-grained clayey rock, including ion migration, electrophoresis and electro-osmosis. The aluminum cathodes were corroded and generated gibbsite at the anode; the steel and copper cathodes showed no obvious change. The electrical resistivity and uniaxial compressive strength (UCS) of the modified specimens from the anode, intermediate and cathode zones tended to decrease. Samples taken from these zones showed a positive correlation between electric resistivity and UCS

Similar works

Full text

thumbnail-image

University of Queensland eSpace

redirect
Last time updated on 02/07/2017

This paper was published in University of Queensland eSpace.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.