A second-order positivity preserving scheme for semilinear parabolic problems

Abstract

In this paper we study the convergence behaviour and geometric properties of Strang splitting applied to semilinear evolution equations. We work in an abstract Banach space setting that allows us to analyse a certain class of parabolic equations and their spatial discretizations. For this class of problems, Strang splitting is shown to be stable and second-order convergent. Moreover, it is shown that exponential operator splitting methods and in particular the method of Strang will preserve positivity in certain situations. A numerical illustration of the convergence behaviour is included

Similar works

This paper was published in Lund University Publications.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: info:eu-repo/semantics/openAccess