Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson's disease: Effect of in vitro differentiation on graft survival and teratoma formation

Abstract

Human embryonic stem cells (hESCs) have been proposed as a source of dopamine (DA) neurons for transplantation in Parkinson's disease (PD). We have investigated the effect of in vitro predifferentiation on in vivo survival and differentiation of hESCs implanted into the 6-OHDA (6-hydroxydopamine)-lesion rat model of PD. The hESCs were cocultured with PA6 cells for 16, 20, or 23 days, leading to the in vitro differentiation into DA neurons. Grafted hESC-derived cells survived well and expressed neuronal markers. However, very few exhibited a DA neuron phenotype. Reversal of lesion-induced motor deficits was not observed. Rats grafted with hESCs predifferentiated in vitro for 16 days developed severe teratomas, whereas most rats grafted with hESCs predifferentiated for 20 and 23 days remained healthy until the end of the experiment. This indicates that prolonged in vitro differentiation of hESCs is essential for preventing formation of teratomas

Similar works

Full text

thumbnail-image

Lund University Publications

redirect
Last time updated on 18/06/2017

This paper was published in Lund University Publications.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.