T-cell tolerance induced by repeated antigen stimulation: Selective loss of Foxp3(-) conventional CD4 T cells and induction of CD4 T-cell anergy.

Abstract

Repeated immunization of mice with bacterial superantigens induces extensive deletion and anergy of reactive CD4 T cells. Here we report that the in vitro proliferation anergy of CD4 T cells from TCR transgenic mice immunized three times with staphylococcal enterotoxin B (SEB) (3x SEB) is partially due to an increased frequency of Foxp3(+) CD4 T cells. Importantly, reduced number of conventional CD25(-) Foxp3(-) cells, rather than conversion of such cells to Foxp3(+) cells, was the cause of that increase and was also seen in mice repeatedly immunized with OVA (3x OVA) and OVA-peptide (OVAp) (3x OVAp). Cell-transfer experiments revealed profound but transient anergy of CD4 T cells isolated from 3x OVAp and 3x SEB mice. However, the in vivo anergy was CD4 T-cell autonomous and independent of Foxp3(+) Treg. Finally, proliferation of transferred CD4 T cells was inhibited in repeatedly immunized mice but inhibition was lost when transfer was delayed, despite the maintenance of elevated frequency of Foxp3(+) cells. These data provide important implications for Foxp3(+) cell-mediated tolerance in situations of repeated antigen exposure such as human persistent infections

Similar works

Full text

thumbnail-image

Lund University Publications

redirect
Last time updated on 18/06/2017

This paper was published in Lund University Publications.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.