Interactive roles of the cerebellum and striatum in sub-second and supra-second timing : Support for an initiation, continuation, adjustment, and termination (ICAT) model of temporal processing

Abstract

The contributions of cortico-cerebellar and cortico-striatal circuits to timing and time perception have often been a point of contention. In this review we propose that the cerebellum principally functions to reduce variability, through the detection of stimulus onsets and the sub-division of longer durations, thus contributing to both sub-second and supra-second timing. This sensitivity of the cerebellum to stimulus dynamics and subsequent integration with motor control allows it to accurately measure intervals within a range of 100–2000 ms. For intervals in the supra-second range (e.g., >2000 ms), we propose that cerebellar output signals from the dentate nucleus pass through thalamic connections to the striatum, where cortico-thalamic-striatal circuits supporting higher-level cognitive functions take over. Moreover, the importance of intrinsic circuit dynamics as well as behavioral, neuroimaging, and lesion studies of the cerebellum and striatum are discussed in terms of a framework positing initiation, continuation, adjustment, and termination phases of temporal processing

Similar works

Full text

thumbnail-image

Lund University Publications

redirect
Last time updated on 18/06/2017

This paper was published in Lund University Publications.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.