Visible parts and dimensions

Abstract

We study the visible parts of subsets of n-dimensional Euclidean space: a point a of a compact set A is visible from an affine subspace K of Rn, if the line segment joining PK(a) to a only intersects A at a (here PK denotes projection onto K). The set of all such points visible from a given subspace K is called the visible part of A from K. We prove that if the Hausdorff dimension of a compact set is at most n−1, then the Hausdorff dimension of a visible part is almost surely equal to the Hausdorff dimension of the set. On the other hand, provided that the set has Hausdorff dimension larger than n − 1, we have the almost sure lower bound n − 1 for the Hausdorff dimensions of visible parts. We also investigate some examples of planar sets with Hausdorff dimension bigger than 1. In particular,we prove that for quasi-circles in the plane all visible parts have Hausdorff dimension equal to 1

    Similar works

    Full text

    thumbnail-image

    Open Research Online (OU)

    redirect

    This paper was published in Open Research Online (OU).

    Having an issue?

    Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.