Skip to main content
Article thumbnail
Location of Repository

Many different Vβ CDR3s can reveal the inherent MHC reactivity of germline-encoded TCR V regions

By Kira Rubtsova, James P. Scott-Browne, Frances Crawford, Shaodong Dai, Philippa Marrack and John W. Kappler

Abstract

We have hypothesized that in the prenegative selection TCR repertoire, many somatically generated complementary-determining region (CDR) 3 loops combine with evolutionarily selected germline Vα/Vβ CDR1/CDR2 loops to create highly MHC/peptide cross-reactive T cells that are subsequently deleted by negative selection. Here, we present a mutational analysis of the Vβ CDR3 of such a cross-reactive T-cell receptor (TCR), YAe62. Most YAe62 TCRs with the mutant CDR3s became less MHC promiscuous. However, others with CDR3s unrelated in sequence to the original recognized even more MHC alleles than the original TCR. Most importantly, this recognition was still dependent on the conserved CDR1/CDR2 residues. These results bolster the idea that germline TCR V elements are inherently reactive to MHC but that this reactivity is fine-tuned by the somatically generated CDR3 loops

Topics: Biological Sciences
Publisher: National Academy of Sciences
OAI identifier: oai:pubmedcentral.nih.gov:2674405
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.