Skip to main content
Article thumbnail
Location of Repository

Essential Role of One-carbon Metabolism and Gcn4p and Bas1p Transcriptional Regulators during Adaptation to Anaerobic Growth of Saccharomyces cerevisiae*S⃞

By Bonny M. Tsoi, Anthony G. Beckhouse, Cristy L. Gelling, Mark J. Raftery, Joyce Chiu, Abraham M. Tsoi, Lars Lauterbach, Peter J. Rogers, Vincent J. Higgins and Ian W. Dawes


The transcriptional activator Gcn4p is considered the master regulator of amino acid metabolism in Saccharomyces cerevisiae and is required for the transcriptional response to amino acid starvation. Here it is shown that Gcn4p plays a previously undescribed role in regulating adaptation to anaerobic growth. A gcn4 mutant exhibited a highly extended lag phase after a shift to anaerobiosis that was the result of l-serine depletion. In addition, the one-carbon metabolism and purine biosynthesis transcriptional regulator Bas1p were strictly required for anaerobic growth on minimal medium, and this was similarly due to l-serine limitation in bas1 mutants. The induction of one-carbon metabolism during anaerobiosis is needed to increase the supply of l-serine from the glycine and threonine pathways. Using a number of experimental approaches, we demonstrate that these transcription regulators play vital roles in regulating l-serine biosynthesis in the face of increased demand during adaptation to anaerobiosis. This increased l-serine requirement is most likely due to anaerobic remodeling of the cell wall, involving de novo synthesis of a large number of very serine-rich mannoproteins and an increase in the total serine content of the cell wall. During anaerobic starvation for l-serine, this essential amino acid is preferentially directed to the cell wall, indicating the existence of a regulatory mechanism to balance competing cellular demands

Topics: Metabolism and Bioenergetics
Publisher: American Society for Biochemistry and Molecular Biology
OAI identifier:
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.