journal articleresearch article

Mapping the Nucleotide and Isoform-Dependent Structural and Dynamical Features of Ras Proteins

Abstract

SummaryRas GTPases are conformational switches controlling cell proliferation, differentiation, and development. Despite their prominent role in many forms of cancer, the mechanism of conformational transition between inactive GDP-bound and active GTP-bound states remains unclear. Here we describe a detailed analysis of available experimental structures and molecular dynamics simulations to quantitatively assess the structural and dynamical features of active and inactive states and their interconversion. We demonstrate that GTP-bound and nucleotide-free G12V H-ras sample a wide region of conformational space, and show that the inactive-to-active transition is a multiphase process defined by the relative rearrangement of the two switches and the orientation of Tyr32. We also modeled and simulated N- and K-ras proteins and found that K-ras is more flexible than N- and H-ras. We identified a number of isoform-specific, long-range side chain interactions that define unique pathways of communication between the nucleotide binding site and the C terminus

Similar works

This paper was published in Elsevier - Publisher Connector .

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.