Zeros and logarithmic asymptotics of Sobolev orthogonal polynomials for exponential weights

Abstract

AbstractWe obtain the (contracted) weak zero asymptotics for orthogonal polynomials with respect to Sobolev inner products with exponential weights in the real semiaxis, of the form xγe−φ(x), with γ>0, which include as particular cases the counterparts of the so-called Freud (i.e., when φ has a polynomial growth at infinity) and Erdös (when φ grows faster than any polynomial at infinity) weights. In addition, the boundness of the distance of the zeros of these Sobolev orthogonal polynomials to the convex hull of the support and, as a consequence, a result on logarithmic asymptotics are derived

Similar works

This paper was published in Elsevier - Publisher Connector .

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.