AbstractWe propose and implement a relaxation method for solving unsteady linear and nonlinear convection–diffusion equations with continuous or discontinuity-like initial conditions. The method transforms a convection–diffusion equation into a relaxation system, which contains a stiff source term. The resulting relaxation system is then solved by a third-order accurate implicit–explicit (IMEX) Runge–Kutta method in time and a fifth-order finite difference WENO scheme in space. Numerical results show that the method can be used to effectively solve convection–diffusion equations with both smooth structures and discontinuities
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.