Skip to main content
Article thumbnail
Location of Repository

Fermi surface nesting induced strong pairing in iron-based superconductors

By K. Terashima, Y. Sekiba, J. H. Bowen, K. Nakayama, T. Kawahara, T. Sato, P. Richard, Y.-M. Xu, L. J. Li, G. H. Cao, Z.-A. Xu, H. Ding and T. Takahashi

Abstract

The discovery of high-temperature superconductivity in iron pnictides raised the possibility of an unconventional superconducting mechanism in multiband materials. The observation of Fermi-surface (FS)-dependent nodeless superconducting gaps suggested that inter-FS interactions may play a crucial role in superconducting pairing. In the optimally hole-doped Ba0.6K0.4Fe2As2, the pairing strength is enhanced simultaneously (2Δ/Tc≈7) on the nearly nested FS pockets, i.e., the inner hole-like (α) FS and the 2 hybridized electron-like FSs, whereas the pairing remains weak (2Δ/Tc≈3.6) in the poorly nested outer hole-like (β) FS. Here, we report that in the electron-doped BaFe1.85Co0.15As2, the FS nesting condition switches from the α to the β FS due to the opposite size changes for hole- and electron-like FSs upon electron doping. The strong pairing strength (2Δ/Tc≈6) is also found to switch to the nested β FS, indicating an intimate connection between FS nesting and superconducting pairing, and strongly supporting the inter-FS pairing mechanism in the iron-based superconductors

Topics: Physical Sciences
Publisher: National Academy of Sciences
OAI identifier: oai:pubmedcentral.nih.gov:2667370
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.