On the vertex-arboricity of planar graphs without 7-cycles

Abstract

AbstractThe vertex arboricity va(G) of a graph G is the minimum number of colors the vertices can be labeled so that each color class induces a forest. It was well-known that va(G)≤3 for every planar graph G. In this paper, we prove that va(G)≤2 if G is a planar graph without 7-cycles. This extends a result in [A. Raspaud, W. Wang, On the vertex-arboricity of planar graphs, European J. Combin. 29 (2008) 1064–1075] that for each k∈{3,4,5,6}, planar graphs G without k-cycles have va(G)≤2

Similar works

This paper was published in Elsevier - Publisher Connector .

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.