AbstractThis is a study of thinnings of point processes and random measures on the real line that satisfy a weak law of large numbers. The thinning procedures have dependencies based on the order of the points or masses being thinned such that the thinned process is a composition of two random measures. It is shown that the thinned process (normalized by a certain function) converges in distribution if and only if the thinning process does. This result is used to characterize the convergence of thinned processes to infinitely divisible processes, such as a compound Poisson process, when the thinning is independent and nonhomogeneous, stationary, Markovian, or regenerative. Thinning by a sequence of independent identically distributed operations is also discussed. The results here contain Renyi's classical thinning theorem and many of its extensions
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.