Skip to main content
Article thumbnail
Location of Repository

Functional Clustering of Mutations in the Dimer Interface of the Nucleotide Binding Folds of the Sulfonylurea Receptor*

By Ricard Masia and Colin G. Nichols


ATP-sensitive K+ (KATP) channels modulate their activity as a function of inhibitory ATP and stimulatory Mg-nucleotides. They are constituted by two proteins: a pore-forming K+ channel subunit (Kir6.1, Kir6.2) and a regulatory sulfonylurea receptor (SUR) subunit, an ATP-binding cassette (ABC) transporter that confers MgADP stimulation to the channel. Channel regulation by MgADP is dependent on nucleotide interaction with the cytoplasmic nucleotide binding folds (NBF1 and NBF2) of the SUR subunit. Crystal structures of bacterial ABC proteins indicate that NBFs form as dimers, suggesting that NBF1-NBF2 heterodimers may form in SUR and other eukaryotic ABC proteins. We have modeled SUR1 NBF1 and NBF2 as a heterodimer, and tested the validity of the predicted dimer interface by systematic mutagenesis. Engineered cysteine mutations in this region have significant effects, both positive and negative, on MgADP stimulation of KATP channels in excised patches and on macroscopic channel activity in intact cells. Additionally, the mutations cluster in the model structure according to their functional effect, such that patterns of alteration emerge. Of note, three gain-of-function mutations, leading to MgADP hyperstimulation of the channel, are located in the D-loop region at the center of the predicted dimer interface. Overall, the data support the idea that SUR1 NBFs assemble as heterodimers and that this interaction is functionally critical

Topics: Protein Structure and Folding
Publisher: American Society for Biochemistry and Molecular Biology
OAI identifier:
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.