Skip to main content
Article thumbnail
Location of Repository

Programmed assembly of 3-dimensional microtissues with defined cellular connectivity

By Zev J. Gartner and Carolyn R. Bertozzi

Abstract

Multicellular organs comprise differentiated cell types with discrete yet interdependent functions. The cells' spatial arrangements and interconnectivities, both critical elements of higher-order function, derive from complex developmental programs in vivo and are often difficult or impossible to emulate in vitro. Here, we report the bottom-up synthesis of microtissues composed of multiple cell types with programmed connectivity. We functionalized cells with short oligonucleotides to impart specific adhesive properties. Hybridization of complementary DNA sequences enabled the assembly of multicellular structures with defined cell–cell contacts. We demonstrated that the kinetic parameters of the assembly process depend on DNA sequence complexity, density, and total cell concentration. Thus, cell assembly can be highly controlled, enabling the design of microtissues with defined cell composition and stoichiometry. We used this strategy to construct a paracrine signaling network in isolated 3-dimensional microtissues

Topics: Physical Sciences
Publisher: National Academy of Sciences
OAI identifier: oai:pubmedcentral.nih.gov:2660766
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.