An adaptive scheme for the approximation of dissipative systems

Abstract

AbstractWe propose a new scheme for the long time approximation of a diffusion when the drift vector field is not globally Lipschitz. Under this assumption, a regular explicit Euler scheme–with constant or decreasing step–may explode and implicit Euler schemes are CPU-time expensive. The algorithm we introduce is explicit and we prove that any weak limit of the weighted empirical measures of this scheme is a stationary distribution of the stochastic differential equation. Several examples are presented including gradient dissipative systems and Hamiltonian dissipative systems

Similar works

This paper was published in Elsevier - Publisher Connector .

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.