AbstractIn this paper we prove that the L2 spectral radius of the traction double layer potential operator associated with the Lamé system on an infinite sector in R2 is within 10−2 from a certain conjectured value which depends explicitly on the aperture of the sector and the Lamé moduli of the system. This type of result is relevant to the spectral radius conjecture, cf., e.g., Problem 3.2.12 in [C.E. Kenig, Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems, CBMS Reg. Conf. Ser. Math., vol. 83, Amer. Math. Soc., Providence, RI, 1994]. The techniques employed in the paper are a blend of classical tools such as Mellin transforms, and Calderón–Zygmund theory, as well as interval analysis—resulting in a computer-aided proof
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.