Skip to main content
Article thumbnail
Location of Repository

Reversed optimality and predictive ecology: burrowing depth forecasts population change in a bivalve

By Jan A. van Gils, Casper Kraan, Anne Dekinga, Anita Koolhaas, Jan Drent, Petra de Goeij and Theunis Piersma

Abstract

Optimality reasoning from behavioural ecology can be used as a tool to infer how animals perceive their environment. Using optimality principles in a ‘reversed manner’ may enable ecologists to predict changes in population size before such changes actually happen. Here we show that a behavioural anti-predation trait (burrowing depth) of the marine bivalve Macoma balthica can be used as an indicator of the change in population size over the year to come. The per capita population growth rate between years t and t+1 correlated strongly with the proportion of individuals living in the dangerous top 4 cm layer of the sediment in year t: the more individuals in the top layer, the steeper the population decline. This is consistent with the prediction based on optimal foraging theory that animals with poor prospects should accept greater risks of predation. This study is among the first to document fitness forecasting in animals

Topics: Research Article
Publisher: The Royal Society
OAI identifier: oai:pubmedcentral.nih.gov:2657738
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.