Geometrical modelling of foam structures using implicit functions

Abstract

AbstractMechanical, thermo-mechanical, and fluid dynamic simulations of open-cell foams require an accurate geometry model. Usually, models are derived from computer- tomography (CT) data which do not allow analysing systematically variation and optimisation of the geometry. On the other hand, entirely computer generated models are mostly assembled of primitive objects like cylinders. This disregards strut thickness variations and node rounding which are observed in real open-cell foams. This paper presents an approach to generate models of ceramic open-cell foams using simple objects with variable thickness generated by implicit functions. This approach can also account for cavities within struts and nodes, which are observed in many real foam structures. The specific rounding at the foam nodes can be modelled by applying the transformation of Blinn. The quality of the generated foam models is verified using CT data of real foams

Similar works

This paper was published in Elsevier - Publisher Connector .

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.