AbstractLet K⊂Rn be a convex body (a compact, convex subset with non-empty interior), ΠK its projection body. Finding the least upper bound, as K ranges over the class of origin-symmetric convex bodies, of the affine-invariant ratio V(ΠK)/V(K)n−1, being called Schneider's projection problem, is a well-known open problem in the convex geometry. To study this problem, Lutwak, Yang and Zhang recently introduced a new affine invariant functional for convex polytopes in Rn. For origin-symmetric convex polytopes, they posed a conjecture for the new functional U(P). In this paper, we give an affirmative answer to the conjecture in Rn, thereby, obtain a modified version of Schneider's projection problem
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.