Skip to main content
Article thumbnail
Location of Repository

Using Natural Language Processing to Improve Accuracy of Automated Notifiable Disease Reporting

By Jeff Friedlin, Shaun Grannis and J. Marc Overhage


We examined whether using a natural language processing (NLP) system results in improved accuracy and completeness of automated electronic laboratory reporting (ELR) of notifiable conditions. We used data from a community-wide health information exchange that has automated ELR functionality. We focused on methicillin-resistant Staphylococcus Aureus (MRSA), a reportable infection found in unstructured, free-text culture result reports. We used the Regenstrief EXtraction tool (REX) for this work. REX processed 64,554 reports that mentioned MRSA and we compared its output to a gold standard (human review). REX correctly identified 39,491(99.96%) of the 39,508 reports positive for MRSA, and committed only 74 false positive errors. It achieved high sensitivity, specificity, positive predicted value and F-measure. REX identified over two times as many MRSA positive reports as the ELR system without NLP. Using NLP can improve the completeness and accuracy of automated ELR

Topics: Articles
Publisher: American Medical Informatics Association
OAI identifier:
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.