Skip to main content
Article thumbnail
Location of Repository

Two Redundant Sodium-Driven Stator Motor Proteins Are Involved in Aeromonas hydrophila Polar Flagellum Rotation▿

By Markus Wilhelms, Silvia Vilches, Raquel Molero, Jonathan G. Shaw, Juan M. Tomás and Susana Merino


Motility is an essential characteristic for mesophilic Aeromonas strains. We identified a new polar flagellum region (region 6) in the A. hydrophila AH-3 (serotype O34) chromosome that contained two additional polar stator genes, named pomA2 and pomB2. A. hydrophila PomA2 and PomB2 are highly homologous to other sodium-conducting polar flagellum stator motors as well as to the previously described A. hydrophila AH-3 PomA and PomB. pomAB and pomA2B2 were present in all the mesophilic Aeromonas strains tested and were independent of the strains' ability to produce lateral flagella. Unlike MotX, which is a stator protein that is essential for polar flagellum rotation, here we demonstrate that PomAB and PomA2B2 are redundant sets of proteins, as neither set on its own is essential for polar flagellum motility in either aqueous or high-viscosity environments. Both PomAB and PomA2B2 are sodium-coupled stator complexes, although PomA2B2 is more sensitive to low concentrations of sodium than PomAB. Furthermore, the level of transcription in aqueous and high-viscosity environments of pomA2B2 is reduced compared to that of pomAB. The A. hydrophila AH-3 polar flagellum is the first case described in which two redundant sodium-driven stator motor proteins (PomAB and PomA2B2) are found

Topics: Molecular Biology of Pathogens
Publisher: American Society for Microbiology (ASM)
OAI identifier:
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.