AbstractWe consider the problem of finding a minimum cost cycle in a digraph with real-valued costs on the vertices. This problem generalizes the problem of finding a longest cycle and hence is NP-hard for general digraphs. We prove that the problem is solvable in polynomial time for extended semicomplete digraphs and for quasi-transitive digraphs, thereby generalizing a number of previous results on these classes. As a byproduct of our method we develop polynomial algorithms for the following problem: Given a quasi-transitive digraph D with real-valued vertex costs, find, for each j=1,2,…,|V(D)|, j disjoint paths P1,P2,…,Pj such that the total cost of these paths is minimum among all collections of j disjoint paths in D
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.