Comparison of non-ideal solution theories for multi-solute solutions in cryobiology and tabulation of required coefficients

Abstract

AbstractThermodynamic solution theories allow the prediction of chemical potentials in solutions of known composition. In cryobiology, such models are a critical component of many mathematical models that are used to simulate the biophysical processes occurring in cells and tissues during cryopreservation. A number of solution theories, both thermodynamically ideal and non-ideal, have been proposed for use with cryobiological solutions. In this work, we have evaluated two non-ideal solution theories for predicting water chemical potential (i.e. osmolality) in multi-solute solutions relevant to cryobiology: the Elliott et al. form of the multi-solute osmotic virial equation, and the Kleinhans and Mazur freezing point summation model. These two solution theories require fitting to only single-solute data, although they can make predictions in multi-solute solutions. The predictions of these non-ideal solution theories were compared to predictions made using ideal dilute assumptions and to available literature multi-solute experimental osmometric data. A single, consistent set of literature single-solute solution data was used to fit for the required solute-specific coefficients for each of the non-ideal models. Our results indicate that the two non-ideal solution theories have similar overall performance, and both give more accurate predictions than ideal models. These results can be used to select between the non-ideal models for a specific multi-solute solution, and the updated coefficients provided in this work can be used to make the desired predictions

Similar works

This paper was published in Elsevier - Publisher Connector .

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.