journal articleresearch article

HLA-A*0201+ Plasmacytoid Dendritic Cells Provide a Cell-Based Immunotherapy for Melanoma Patients

Abstract

Several sources of evidence suggest that tumor-specific T cells have the potential to control melanoma tumors. Current active and adoptive therapeutic approaches to elicit such T cells are either not sufficiently clinically efficient or require fastidious processes that impede their extensive clinical use. As plasmacytoid dendritic cells (pDCs) have a crucial role in triggering antitumor immunity especially in melanoma, we explored their potential as a cell-based approach for melanoma immunotherapy. An irradiated human HLA-A*0201+ pDC line loaded with peptides derived from the major melanoma tumor antigens, MelA/MART-1, gp100/pmel17, tyrosinase, and MAGE-A3, was used to trigger functional multi-specific T cells ex vivo from peripheral blood mononuclear cells and tumor-infiltrating lymphocytes from stage I–IV HLA-A*0201+ melanoma patients. pDCs loaded with melanoma-derived peptides promptly induced high levels of melanoma tumor-specific T cells from both sources. pDC-primed central/effector memory antitumor T cells were highly functional as indicated by the specific IFNγ secretion and membrane CD107 expression upon stimulation. Cells also exhibited strong cytotoxicity toward semi-allogeneic melanoma cells and patient-derived tumor cells. The simple design and potent efficacy of this promising approach provides a preclinical basis for the development of a pDC-based vaccine and an alternative means to produce tumor-specific T cells for adoptive cellular immunotherapy in melanoma patients

Similar works

This paper was published in Elsevier - Publisher Connector .

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.