AbstractTextOne of the most important statistics in studying the zeros of L-functions is the 1-level density, which measures the concentration of zeros near the central point. Fouvry and Iwaniec (2003) [FI] proved that the 1-level density for L-functions attached to imaginary quadratic fields agrees with results predicted by random matrix theory. In this paper, we show a similar agreement with random matrix theory occurring in more general sequences of number fields. We first show that the main term agrees with random matrix theory, and similar to all other families studied to date, is independent of the arithmetic of the fields. We then derive the first lower order term of the 1-level density, and see the arithmetic enter.VideoFor a video summary of this paper, please click here or visit http://www.youtube.com/watch?v=zpb-gu3G8i0
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.