AbstractRealistic interfacial energy densities are often non-convex, which results in backward parabolic behavior of the corresponding anisotropic curve shortening flow, thereby inducing phenomena such as the formation of corners and facets. Adding a term that is quadratic in the curvature to the interfacial energy yields a regularized evolution equation for the interface, which is fourth-order parabolic. Using a semi-implicit time discretization, we present a variational formulation of this equation, which allows the use of linear finite elements. The resulting linear system is shown to be uniquely solvable. We also present numerical examples
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.