AbstractA simple characterization is given of finitely generated subspaces of L2(Rd) which are invariant under translation by any (multi)integer, and is used to give conditions under which such a space has a particularly nice generating set, namely a basis, and, more than that, a basis with desirable properties, such as stability, orthogonality, or linear independence. The last property makes sense only for "local" spaces, i.e., shift-invariant spaces generated by finitely many compactly supported functions, and special attention is paid to such spaces. As an application, we prove that the approximation order provided by a given local space is already provided by the shift-invariant space generated by just one function, with this function constructible as a finite linear combination of the finite generating set for the whole space, hence compactly supported. This settles a question of some 20 years′ standing
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.