AbstractViscosity approximation methods for nonexpansive mappings are studied. Consider the iteration process {xn}, where x0∈C is arbitrary and xn+1=αnf(xn)+(1−αn)SPC(xn−λnAxn), f is a contraction on C, S is a nonexpansive self-mapping of a closed convex subset C of a Hilbert space H. It is shown that {xn} converges strongly to a common element of the set of fixed points of nonexpansive mapping and the set of solutions of the variational inequality for an inverse strongly-monotone mapping which solves some variational inequality
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.