journal articleresearch article

CaMKII Triggers the Diffusional Trapping of Surface AMPARs through Phosphorylation of Stargazin

Abstract

SummaryThe Ca2+/calmodulin-dependent protein kinase II (CaMKII) is critically required for the synaptic recruitment of AMPA-type glutamate receptors (AMPARs) during both development and plasticity. However, the underlying mechanism is unknown. Using single-particle tracking of AMPARs, we show that CaMKII activation and postsynaptic translocation induce the synaptic trapping of AMPARs diffusing in the membrane. AMPAR immobilization requires both phosphorylation of the auxiliary subunit Stargazin and its binding to PDZ domain scaffolds. It does not depend on the PDZ binding domain of GluA1 AMPAR subunit nor its phosphorylation at Ser831. Finally, CaMKII-dependent AMPAR immobilization regulates short-term plasticity. Thus, NMDA-dependent Ca2+ influx in the post-synapse triggers a CaMKII- and Stargazin-dependent decrease in AMPAR diffusional exchange at synapses that controls synaptic function

Similar works

This paper was published in Elsevier - Publisher Connector .

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.