AbstractWe present some general results concerning so-called biorthogonal polynomials of RII type introduced by M. Ismail and D. Masson. These polynomials give rise to a pair of rational functions which are biorthogonal with respect to a linear functional. It is shown that these rational functions naturally appear as eigenvectors of the generalized eigenvalue problem for two arbitrary tri-diagonal matrices. We study spectral transformations of these functions leading to a rational modification of the linear functional. An analogue of the Christoffel–Darboux formula is obtained
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.