journal articleresearch article

Biorthogonal Rational Functions and the Generalized Eigenvalue Problem

Abstract

AbstractWe present some general results concerning so-called biorthogonal polynomials of RII type introduced by M. Ismail and D. Masson. These polynomials give rise to a pair of rational functions which are biorthogonal with respect to a linear functional. It is shown that these rational functions naturally appear as eigenvectors of the generalized eigenvalue problem for two arbitrary tri-diagonal matrices. We study spectral transformations of these functions leading to a rational modification of the linear functional. An analogue of the Christoffel–Darboux formula is obtained

Similar works

This paper was published in Elsevier - Publisher Connector .

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.