Commercial single-walled carbon nanotubes effects in fibrinolysis of human umbilical vein endothelial cells

Abstract

AbstractRecent studies have demonstrated that carbon nanotubes (CNTs) induce platelet aggregation, endothelial dysfunction and vascular thrombosis. However, there is little information on the effects of CNTs on fibrinolysis. We investigated the role of pristine-commercial single-walled carbon nanotubes (SWCNTs) with <3% Co content in fibrinolysis and their contribution to the induction of pro-thrombotic processes in human vein endothelial cells (HUVEC). SWCNTs alone produced concentration-dependent oxidation, as measured by a dithiothreitol oxidation assay. Internalized SWCNTs were located in HUVEC treated with 25μg/ml using transmission electron microscopy, whereas treatment with 50μg/ml compromised cell viability, and oxidative stress increased significantly at 5μg/ml. The study showed that in HUVEC treated with 25μg SWCNT/ml, fibrinolysis-related gene expression and protein levels had increased by 3–12h after treatment (serpine-1: 13-fold; PLAT: 11-fold and PLAU: 2-fold), but only the PAI-1 protein was increased (1.5-fold), whereas tissue and urokinase plasminogen activator proteins (tPA and uPA, respectively) tended to decrease. In summary, pristine SWCNTs treatment resulted in evident HUVEC damage caused by cell fiber contact, internalization, and oxidative stress due to contaminant metals. The generation of endothelial dysfunction, as shown by the altered expression of genes and proteins involved in fibrinolysis, suggest that SWCNTs display pro-thrombotic effects

Similar works

This paper was published in Elsevier - Publisher Connector .

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.