research

Applying MGAP Modeling to the Hard Real-time Task Allocation on Multiple Heterogeneous Processors Problem

Abstract

AbstractThe usage of heterogeneous multicore platforms is appealing for applications, e.g. hard real-time systems, due to the potential reduced energy consumption offered by such platforms. However, the power wall is still a barrier to improving the processor design process due to the power consumption of components. Hard real-time systems are part of life critical environments and reducing the energy consumption on such systems is an onerous and complex process. This paper reassesses the problem of finding assignments of hard real-time tasks among heterogeneous processors taking into account timing constraints and targeting low power consumption. We also propose models based on a well-established literature formulation of the Multilevel Generalized Assignment Problem (MGAP). We tackle the problem from the perspective of different integer programming mathematical formulations and their interplay on the search for optimal solutions. Experimentation shows that using strict schedulability tests as constraints of 0/1 integer linear programming results in faster solvers capable of finding optimum solutions with lower power consumption

Similar works

Full text

thumbnail-image
Last time updated on 06/05/2017

This paper was published in Elsevier - Publisher Connector .

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.