AbstractFor A an Archimedean Riesz space (=vector lattice) with distinguished positive weak unit eA, we have the Yosida representation  as a Riesz space in D(XA), the lattice of extended real valued functions on the space of eA-maximal ideas. This note is about those A for which  is a convex subset of D(XA); we call such A “convex”.Convex Riesz spaces arise from the general issue of embedding as a Riesz ideal, from consideration of uniform- and order-completeness, and from some problems involving comparison of maximal ideal spaces (which we won't discuss here; see [10]).The main results here are: (2.4) A is convex iff A is contained as a Riesz ideal in a uniformly complete Φ-algebra B with identity eA. (3.1) Any A has a convex reflection (i.e., embeds into a convex B with a universal mapping property for Riesz homomorphisms; moreover, the embedding is epic and large)
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.