AbstractWe consider the nonlinear parabolic equation ut = (k(u)ux)x + b(u)x, where u = u(x, t, x ϵ R1, t > 0; k(u) ≥ 0, b(u) ≥ 0 are continuous functions as u ≥ 0, b (0) = 0; k, b > 0 as u > 0. At t = 0 nonnegative, continuous and bounded initial value is prescribed. The boundary condition u(0, t) = Ψ(t) is supposed to be unbounded as t → +∞. In this paper, sufficient conditions for space localization of unbounded boundary perturbations are found. For instance, we show that nonlinear equation ut = (unux)x + (uβ)x, n ≥ 0, β >; n + 1, exhibits the phenomenon of “inner boundedness,” for arbitrary unbounded boundary perturbations
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.