Computation of matrix functions with deflated restarting

Abstract

AbstractA deflated restarting Krylov subspace method for approximating a function of a matrix times a vector is proposed. In contrast to other Krylov subspace methods, the performance of the method in this paper is better. We further show that the deflating algorithm inherits the superlinear convergence property of its unrestarted counterpart for the entire function and present the results of numerical experiments

Similar works

This paper was published in Elsevier - Publisher Connector .

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.