Competitive online routing in geometric graphs

Abstract

AbstractWe consider online routing algorithms for finding paths between the vertices of plane graphs. Although it has been shown in Bose et al. (Internat. J. Comput. Geom. 12(4) (2002) 283) that there exists no competitive routing scheme that works on all triangulations, we show that there exists a simple online O(1)-memory c-competitive routing strategy that approximates the shortest path in triangulations possessing the diamond property, i.e., the total distance travelled by the algorithm to route a message between two vertices is at most a constant c times the shortest path. Our results imply a competitive routing strategy for certain classical triangulations such as the Delaunay, greedy, or minimum-weight triangulation, since they all possess the diamond property. We then generalize our results to show that the O(1)-memory c-competitive routing strategy works for all plane graphs possessing both the diamond property and the good convex polygon property

Similar works

This paper was published in Elsevier - Publisher Connector .

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.