Zero dissipation limit to strong contact discontinuity for the 1-D compressible Navier–Stokes equations

Abstract

AbstractIn this paper, we study the zero dissipation limit problem for the one-dimensional compressible Navier–Stokes equations. We prove that if the solution of the inviscid Euler equations is piecewise constants with a contact discontinuity, then there exist smooth solutions to the Navier–Stokes equations which converge to the inviscid solution away from the contact discontinuity at a rate of κ14 as the heat-conductivity coefficient κ tends to zero, provided that the viscosity μ is of higher order than the heat-conductivity κ. Without loss of generality, we set μ≡0. Here we have no need to restrict the strength of the contact discontinuity to be small

Similar works

This paper was published in Elsevier - Publisher Connector .

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.