AbstractIn this paper, we consider a family of feasible generalised double k-class estimators in a linear regression model with non-spherical disturbances. We derive the large sample asymptotic distribution of the proposed family of estimators and compare its performance with the feasible generalized least squares and Stein-rule estimators using the mean squared error matrix and risk under quadratic loss criteria. A Monte-Carlo experiment investigates the finite sample behaviour of the proposed family of estimators
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.