journal articleresearch article

Control of CNS Cell-Fate Decisions by SHP-2 and Its Dysregulation in Noonan Syndrome

Abstract

SummaryWithin the developing mammalian CNS, growth factors direct multipotent precursors to generate neurons versus glia, a process that if perturbed might lead to neural dysfunction. In this regard, genetic mutations resulting in constitutive activation of the protein tyrosine phosphatase SHP-2 cause Noonan Syndrome (NS), which is associated with learning disabilities and mental retardation. Here, we demonstrate that genetic knockdown of SHP-2 in cultured cortical precursors or in the embryonic cortex inhibited basal neurogenesis and caused enhanced and precocious astrocyte formation. Conversely, expression of an NS SHP-2 mutant promoted neurogenesis and inhibited astrogenesis. Neural cell-fate decisions were similarly perturbed in a mouse knockin model that phenocopies human NS. Thus, SHP-2 instructs precursors to make neurons and not astrocytes during the neurogenic period, and perturbations in the relative ratios of these two cell types upon constitutive SHP-2 activation may contribute to the cognitive impairments in NS patients

Similar works

This paper was published in Elsevier - Publisher Connector .

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.