AbstractThe solution of a linear reaction–diffusion equation on a non-convex polygon is proved to be globally regular in a suitable weighted Sobolev space. This result is used to design an optimally convergent Fourier-Finite Element Method (FEM) where the mesh size is suitably refined. Furthermore, the coupled Non-Standard Finite Difference Method (NSFDM)-FEM is presented as a reliable scheme that replicates the essential properties of the exact solution
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.