AbstractA rapid, easy assay for monitoring dynamics of T-cell activation should help to guide potential medical evaluation of immune responses or immunopathogenesis. Here, we report development of novel electrochemical cytosensors for dynamic analyses of T-cell activation markers on living cells. Gold nanoparticles-doped polyaniline nanofiber (Au/PANI-NFs) composite was greenly prepared by in situ one-step chemical inertness of PANI-NFs with gold nanoparticles to fabricate impedance-based electrochemical biosensors. Transmission electron micrographs indicated that the gold nanoparticles were uniformly anchored along with the structure of PANI-NF surface, displaying fibrillar morphology with a ∼60nm diameter. Au/PANI-NFs-based cytosensors coated with anti-CD Ab molecules could provide biomimetic interface for multiple immunosensing of T-cell surface activation markers (CD69, CD25, and CD71). The dual signal amplification of Au nanoparticle and PANI-NFs-based electrochemical impedance spectroscopic (EIS) measurements enabled the cytosensors considerably sensitive, with a detection limit of 1×104 cells/ml of activated T-cells. The activation-targeted cytosensors detected early, middle and late stages for expression of activation markers CD69, CD25, and CD71 at 8h, 24h, and 36h, respectively, after concanvalin A stimulation of T cells. The quantitative results consisted with those derived from flow cytometric analysis. Furthermore, activation-targeted cytosensor allowed for dynamic analysis of the immune inhibition of T-cell activation by immune regulatory drug icariin (ICA). Thus, Au/PANI-NFs-based cytosensors offer simple and fast approach for non-destructive, quantitative evaluation of T-cell activation markers, with considerable specificity, reproducibility, and low background noise
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.