AbstractThis paper reports an investigation of the fully developed natural convection heat and mass transfer of a micropolar fluid in a vertical channel. Asymmetric temperature and concentration boundary conditions are applied to the walls of the channel. The cases of double diffusion and Soret-induced convection are both considered. The governing parameters for the problem are the buoyancy ratio and the various material parameters of the micropolar fluid. The resulting non-dimensional boundary value problem is solved analytically in closed form using MAPLE software. A numerical solution of the time dependent governing equations is demonstrated to be in good agreement with the analytical model. The influence of the governing parameters on the fluid flow as well as heat and solute transfers is demonstrated to be significant
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.