AbstractA graph is half-arc-transitive if its automorphism group acts transitively on vertices and edges, but not on arcs. In this paper, a new infinite family of tetravalent half-arc-transitive graphs with girth 4 is constructed, each of which has order 16m such that m>1 is a divisor of 2t2+2t+1 for a positive integer t and is tightly attached with attachment number 4m. The smallest graph in the family has order 80
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.