AbstractWe consider scalar hyperbolic conservation laws with a nonconvex flux, in one space dimension. Then, weak solutions of the associated initial value problems can contain undercompressive shock waves. We regularize the hyperbolic equation by a parabolic–elliptic system that produces undercompressive waves in the hyperbolic limit regime. Moreover we show that in another limit regime, called capillarity limit, we recover solutions of a diffusive–dispersive regularization, which is the standard regularization used to approximate undercompressive waves. In fact the new parabolic–elliptic system can be understood as a low-order approximation of the third-order diffusive–dispersive regularization, thus sharing some similarities with the relaxation approximations. A study of the traveling waves for the parabolic–elliptic system completes the paper
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.